Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.572
Filtrar
1.
Cell Mol Biol Lett ; 29(1): 47, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589823

RESUMO

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in vascular smooth muscle cell (VSMC) phenotypic switching, which is an early pathogenic event in various vascular remodeling diseases (VRDs). However, the underlying mechanism is not fully understood. METHODS: An IP‒LC‒MS/MS assay was conducted to identify new binding partners of G6PD involved in the regulation of VSMC phenotypic switching under platelet-derived growth factor-BB (PDGF-BB) stimulation. Co-IP, GST pull-down, and immunofluorescence colocalization were employed to clarify the interaction between G6PD and voltage-dependent anion-selective channel protein 1 (VDAC1). The molecular mechanisms involved were elucidated by examining the interaction between VDAC1 and apoptosis-related biomarkers, as well as the oligomerization state of VDAC1. RESULTS: The G6PD level was significantly elevated and positively correlated with the synthetic characteristics of VSMCs induced by PDGF-BB. We identified VDAC1 as a novel G6PD-interacting molecule essential for apoptosis. Specifically, the G6PD-NTD region was found to predominantly contribute to this interaction. G6PD promotes VSMC survival and accelerates vascular neointimal hyperplasia by inhibiting VSMC apoptosis. Mechanistically, G6PD interacts with VDAC1 upon stimulation with PDGF-BB. By competing with Bax for VDAC1 binding, G6PD reduces VDAC1 oligomerization and counteracts VDAC1-Bax-mediated apoptosis, thereby accelerating neointimal hyperplasia. CONCLUSION: Our study showed that the G6PD-VDAC1-Bax axis is a vital switch in VSMC apoptosis and is essential for VSMC phenotypic switching and neointimal hyperplasia, providing mechanistic insight into early VRDs.


Assuntos
Glucosefosfato Desidrogenase , Músculo Liso Vascular , Canal de Ânion 1 Dependente de Voltagem , Humanos , Hiperplasia/metabolismo , Hiperplasia/patologia , Becaplermina/genética , Becaplermina/metabolismo , Proliferação de Células , Proteína X Associada a bcl-2/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Músculo Liso Vascular/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neointima/genética , Neointima/metabolismo , Neointima/patologia , Apoptose , Miócitos de Músculo Liso/metabolismo , Movimento Celular/genética , Células Cultivadas , Fenótipo
2.
Sci Rep ; 14(1): 7212, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532013

RESUMO

The endovascular neural interface provides an appealing minimally invasive alternative to invasive brain electrodes for recording and stimulation. However, stents placed in blood vessels have long been known to affect blood flow (haemodynamics) and lead to neointimal growth within the blood vessel. Both the stent elements (struts and electrodes) and blood vessel wall geometries can affect the mechanical environment on the blood vessel wall, which could lead to unfavourable vascular remodelling after stent placement. With increasing applications of stents and stent-like neural interfaces in venous blood vessels in the brain, it is necessary to understand how stents affect blood flow and tissue growth in veins. We explored the haemodynamics of a stent-mounted neural interface in a blood vessel model. Results indicated that blood vessel deformation and tapering caused a substantial change to the lumen geometry and the haemodynamics. The neointimal proliferation was evaluated in sheep implanted with an endovascular neural interface. Analysis showed a negative correlation with the mean Wall Shear Stress pattern. The results presented here indicate that the optimal stent oversizing ratio must be considered to minimise the haemodynamic impact of stenting.


Assuntos
Hemodinâmica , Stents , Animais , Ovinos , Circulação Coronária/fisiologia , Neointima
3.
Atherosclerosis ; 391: 117480, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447436

RESUMO

BACKGROUND AND AIMS: Vascular injury-induced endothelium-denudation and profound vascular smooth muscle cells (VSMCs) proliferation and dis-regulated apoptosis lead to post-angioplasty restenosis. Coptisine (CTS), an isoquinoline alkaloid, has multiple beneficial effects on the cardiovascular system. Recent studies identified it selectively inhibits VSMCs proliferation. However, its effects on neointimal hyperplasia, re-endothelialization, and the underlying mechanisms are still unclear. METHODS: Cell viability was assayed by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and cell counting kit-8 (CCK-8). Cell proliferation and apoptosis were measured by flow cytometry and immunofluorescence of Ki67 and TUNEL. Quantitative phosphoproteomics (QPP) was employed to screen CTS-responsive phosphor-sites in the key regulators of cell proliferation and apoptosis. Neointimal hyperplasia was induced by balloon injury of rat left carotid artery (LCA). Adenoviral gene transfer was conducted in both cultured cells and LCA. Re-endothelialization was evaluated by Evan's blue staining of LCA. RESULTS: 1) CTS had strong anti-proliferative and pro-apoptotic effects in cultured rat VSMCs, with the EC50 4∼10-folds lower than that in endothelial cells (ECs). 2) Rats administered with CTS, either locally to LCA's periadventitial space or orally, demonstrated a potently inhibited balloon injury-induced neointimal hyperplasia, but had no delaying effect on re-endothelialization. 3) The QPP results revealed that the phosphorylation levels of Pak1S144/S203, Pak2S20/S197, Erk1T202/Y204, Erk2T185/Y187, and BadS136 were significantly decreased in VSMCs by CTS. 4) Adenoviral expression of phosphomimetic mutants Pak1D144/D203/Pak2D20/D197 enhanced Pak1/2 activities, stimulated the downstream pErk1T202/Y204/pErk2T185/Y187/pErk3S189/pBadS136, attenuated CTS-mediated inhibition of VSMCs proliferation and promotion of apoptosis in vitro, and potentiated neointimal hyperplasia in vivo. 5) Adenoviral expression of phosphoresistant mutants Pak1A144/A203/Pak2A20/A197 inactivated Pak1/2 and totally simulated the inhibitory effects of CTS on platelet-derived growth factor (PDGF)-stimulated VSMCs proliferation and PDGF-inhibited apoptosis in vitro and neointimal hyperplasia in vivo. 6) LCA injury significantly enhanced the endogenous phosphorylation levels of all but pBadS136. CTS markedly attenuated all the enhanced levels. CONCLUSIONS: These results indicate that CTS is a promising medicine for prevention of post-angioplasty restenosis without adverse impact on re-endothelialization. CTS-directed suppression of pPak1S144/S203/pPak2S20/S197 and the subsequent effects on downstream pErk1T202/Y204/pErk2T185/Y187/pErk3S189 and pBadS136 underline its mechanisms of inhibition of VSMCs proliferation and stimulation of apoptosis. Therefore, the phosphor-sites of Pak1S144/S203/Pak2S20/S197 constitute a potential drug-screening target for fighting neointimal hyperplasia restenosis.


Assuntos
Berberina/análogos & derivados , Lesões das Artérias Carótidas , Músculo Liso Vascular , Ratos , Animais , Hiperplasia/patologia , Músculo Liso Vascular/patologia , Células Endoteliais/metabolismo , Proliferação de Células , Neointima/metabolismo , Lesões das Artérias Carótidas/patologia , Células Cultivadas , Miócitos de Músculo Liso/patologia , Movimento Celular
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167099, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428686

RESUMO

The abnormal proliferation, migration, and inflammation of vascular smooth muscle cells (VSMCs) play crucial roles in the development of neointimal hyperplasia and restenosis. Exposure to inflammatory cytokines such as platelet-derived growth factor (PDGF)-BB and tumour necrosis factor-alpha (TNF-α) induces the transformation of contractile VSMCs into abnormal synthetic VSMCs. Isoxanthohumol (IXN) has significant anti-inflammatory, antiproliferative, and antimigratory effects. This study aimed to explore the therapeutic impact and regulatory mechanism of IXN in treating neointimal hyperplasia. The present findings indicate that IXN effectively hinders the abnormal proliferation, migration, and inflammation of VSMCs triggered by PDGF or TNF-α. This inhibition is primarily achieved through the modulation of the apelin/AKT or AKT pathway, respectively. In an in vivo model, IXN effectively reduced neointimal hyperplasia in denuded femoral arteries. These results suggest that IXN holds promise as a potential and innovative therapeutic candidate for the treatment of restenosis.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator de Necrose Tumoral alfa , Xantonas , Humanos , Hiperplasia/tratamento farmacológico , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Apelina , Movimento Celular , Becaplermina/farmacologia , Neointima/tratamento farmacológico , Neointima/metabolismo , Inflamação
5.
Catheter Cardiovasc Interv ; 103(5): 752-757, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385905

RESUMO

BACKGROUND: Iliofemoral deep vein thrombosis (IFDVT) causes severe symptoms and affect the quality of life to a great extent. Endovascular thrombectomy and stent implantation have been a feasible strategie to alleviate the signs and symptoms of IFDVT. However, venous in-stent restenosis (ISR) has become an emerging non-negligible problem. METHODS: To evaluate the histological characteristics of venous ISR, neointima of arterial and venous ISR patients were collected and examed. To explore the effect of drug-coated balloon (DCB) on venous ISR lesions, we conducted a single-center retrospective case series study involving IFDVT patients with ISR after venous stenting who were treated with paclitaxel-coated balloon dilatation. RESULTS: We found a collagen-rich matrix but not elastin, as well as fewer cells and less neovascularization in venous intimal hyperplasia compared with neointima in arteries. Thirteen IFDVT patients were involved in the study, with average preoperative stenosis degree of 87.69% ± 13.48%. After intervention, the stenosis degree was significantly reduced to 14.6% ± 14.36% immediately (p < 0.0001) and to 16.54% ± 15.73% during follow-up (p < 0.0001). During follow-up, the VEINES-QOL scores (p < 0.0001), VEINES-Sym scores (p < 0.0001), and Villalta scores (p = 0.04) of patients was improved significantly compared with those before intervention. No major adverse events were observed. CONCLUSIONS: The use of DCB may have a positive effect in the treatment of venous ISR by targeting intimal hyperplasia. Moreover, the application of DCB dilatation in IFDVT stenting patients with ISR is deemed safe and effective.


Assuntos
Angioplastia Coronária com Balão , Reestenose Coronária , Trombose Venosa , Humanos , Angioplastia Coronária com Balão/efeitos adversos , Qualidade de Vida , Constrição Patológica/induzido quimicamente , Reestenose Coronária/etiologia , Estudos Retrospectivos , Neointima/induzido quimicamente , Neointima/complicações , Hiperplasia/induzido quimicamente , Hiperplasia/complicações , Resultado do Tratamento , Stents/efeitos adversos , Paclitaxel/efeitos adversos , Trombose Venosa/diagnóstico por imagem , Trombose Venosa/terapia , Materiais Revestidos Biocompatíveis
6.
J Vasc Res ; 61(2): 89-98, 2024.
Artigo em Francês | MEDLINE | ID: mdl-38368869

RESUMO

INTRODUCTION: Vascular prosthetic grafts are widely used in vascular surgery; however, graft infection remains a major concern. Silver-coated vascular grafts have demonstrated anti-infection properties in clinical settings; however, whether the silver irons influence foreign body reaction or neointimal hyperplasia remains unclear. METHODS: Sodium alginate and hyaluronic acid (SA/HA) hydrogel patches loaded with rhodamine, with or without silver, were fabricated. Patches were implanted in the subcutaneous or abdominal cavity and inferior vena cava of rats. Samples were harvested on day 14 and examined via immunohistochemical and immunofluorescence analyses. RESULTS: Silver hydrogel was found to decrease the foreign body reaction; after subcutaneous and abdominal cavity implantation in rats, the capsule was found to be thinner in the silver hydrogel group than in the control hydrogel group. The silver hydrogel group had fewer CD68-positive cells and proliferating cell nuclear antigen and interleukin-33 (IL-33) dual-positive cells than the control hydrogel group. Additionally, the silver hydrogel patch reduced the neointimal thickness after patch venoplasty in rats, and the number of IL-33- and IL-1ß-positive cells was lower than that in the control patch. CONCLUSION: Silver-loaded SA/HA hydrogel patches decreased the foreign body reaction and venous neointimal hyperplasia in rats by the inhibition of IL-33 expression.


Assuntos
Interleucina-33 , Prata , Ratos , Animais , Hiperplasia , Neointima , Reação a Corpo Estranho/etiologia , Reação a Corpo Estranho/prevenção & controle , Hidrogéis
7.
Atherosclerosis ; 390: 117470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342025

RESUMO

BACKGROUND AND AIMS: Myotubularin-related protein 7 (MTMR7) suppresses proliferation in various cell types and is associated with cardiovascular and cerebrovascular diseases. However, whether MTMR7 regulates vascular smooth muscle cell (VSMC) and vascular intimal hyperplasia remains unclear. We explored the role of MTMR7 in phenotypic switching of VSMC and vascular intimal hyperplasia after injury. METHODS AND RESULTS: MTMR7 expression was significantly downregulated in injured arteries. Compared to wild type (WT) mice, Mtmr7-transgenic (Mtmr7-Tg) mice showed reduced intima/media ratio, decreased percentage of Ki-67-positive cells within neointima, and increased Calponin expression in injured artery. In vitro, upregulating MTMR7 by Len-Mtmr7 transfection inhibited platelet derived growth factor (PDGF)-BB-induced proliferation, migration of VSMC and reversed PDGF-BB-induced decrease in expression of Calponin and SM-MHC. Microarray, single cell sequence, and other bioinformatics analysis revealed that MTMR7 is highly related to glucose metabolism and mammalian target of rapamycin complex 1 (mTORC1). Further experiments confirmed that MTMR7 markedly repressed glycolysis and mTORC1 activity in PDGF-BB-challenged VSMC in vitro. Restoring mTORC1 activity abolished MTMR7-mediated suppression of glycolysis, phenotypic shift in VSMC in vitro and protection against vascular intimal hyperplasia in vivo. Furthermore, upregulating MTMR7 in vitro led to dephosphorylation and dissociation of p62 from mTORC1 in VSMC. External expression of p62 in vitro also abrogated the inhibitory effects of MTMR7 on glycolysis and phenotypic switching in PDGF-BB-stimulated VSMC. CONCLUSIONS: Our study demonstrates that MTMR7 inhibits injury-induced vascular intimal hyperplasia and phenotypic switching of VSMC. Mechanistically, the beneficial effects of MTMR7 are conducted via suppressing p62/mTORC1-mediated glycolysis.


Assuntos
Músculo Liso Vascular , Neointima , Camundongos , Animais , Becaplermina/farmacologia , Becaplermina/metabolismo , Proliferação de Células , Músculo Liso Vascular/patologia , Hiperplasia/patologia , Neointima/metabolismo , Camundongos Transgênicos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , Glucose/metabolismo , Miócitos de Músculo Liso/patologia , Movimento Celular , Células Cultivadas , Mamíferos
8.
Biomaterials ; 306: 122507, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367300

RESUMO

Despite the significant progress made in recent years, clinical issues with small-diameter vascular grafts related to low mechanical strength, thrombosis, intimal hyperplasia, and insufficient endothelialization remain unresolved. This study aims to design and fabricate a core-shell fibrous small-diameter vascular graft by co-axial electrospinning process, which will mechanically and biologically meet the benchmarks for blood vessel replacement. The presented graft (PGHV) comprised polycaprolactone/gelatin (shell) loaded with heparin-VEGF and polycaprolactone (core). This study hypothesized that the shell structure of the fibers would allow rapid degradation to release heparin-VEGF, and the core would provide mechanical strength for long-term application. Physico-mechanical evaluation, in vitro biocompatibility, and hemocompatibility assays were performed to ensure safe in vivo applications. After 25 days, the PGHV group released 79.47 ± 1.54% of heparin and 86.25 ± 1.19% of VEGF, and degradation of the shell was observed but the core remained pristine. Both the control (PG) and PGHV groups demonstrated robust mechanical properties. The PGHV group showed excellent biocompatibility and hemocompatibility compared to the PG group. After four months of rat aorta implantation, PGHV exhibited smooth muscle cell regeneration and complete endothelialization with a patency rate of 100%. The novel core-shell structured graft could be pivotal in vascular tissue regeneration application.


Assuntos
Nanofibras , Enxerto Vascular , Ratos , Animais , Heparina/química , Fator A de Crescimento do Endotélio Vascular/química , Hiperplasia/prevenção & controle , Nanofibras/química , Prótese Vascular , Neointima/prevenção & controle , Poliésteres/química
9.
Zhonghua Xin Xue Guan Bing Za Zhi ; 52(2): 150-157, 2024 Feb 24.
Artigo em Chinês | MEDLINE | ID: mdl-38326066

RESUMO

Objective: To investigate the characteristics of neointimal hyperplasia (NIH) in patients with in-stent restenosis (ISR) over 5 years post-drug-eluting stent (DES) implantation based on optical coherence tomography (OCT). Methods: In this cross-sectional study, patients with DES-ISR who underwent OCT examination at PLA General Hospital between March 2010 and March 2022 were retrospectively included. All patients were divided into≤5 years DES-ISR group and>5 years DES-ISR group according to the time interval after DES implantation. Quantitative and qualitative analyses were conducted on OCT images to compare the clinical data and lesion characteristics of two patient groups. Furthermore, the independent clinical predictive factors of in-stent neoatherosclerosis (ISNA) were analyzed by multivariable logistic regression. Results: A total of 230 DES-ISR patients with 249 lesions were included, with an age of (63.1±10.4) years and 188 males (81.7%). The median interval after DES implantation was 6 (2, 9) years. There were 117 patients (122 ISR lesions) in the≤5 years DES-ISR group, and 113 patients (127 ISR lesions) in the>5 years DES-ISR group. Compared with≤5 years DES-ISR,>5 years DES-ISR showed more heterogeneous patterns (65.4% (83/127) vs. 48.4% (59/122), P=0.007), diffuse patterns (46.5% (59/127) vs. 31.2% (38/122), P=0.013), macrophage accumulations (44.1% (56/127) vs. 31.2% (38/122), P=0.035) in NIH and higher prevalence of ISNA (83.5% (106/127) vs. 72.1% (88/122), P=0.031). According to multivariable logistic regression, the independent predictive factor for ISNA was female (OR=0.44, 95%CI 0.21-0.90, P=0.026). Female (OR=0.48, 95%CI 0.23-0.99, P=0.046) and low-density lipoprotein cholesterol level (OR=1.62, 95%CI 1.01-2.59, P=0.046) were independent predictive factors, respectively, for lipid ISNA. Calcified ISNA was independently associated with time interval of post-DES implantation (OR=1.18, 95%CI 1.07-1.29, P=0.001). Conclusion: DES-ISR patients with a time interval of>5 years after stent implantation have a higher prevalence of ISNA and more complex lesions. Gender, the level of low-density lipoprotein cholesterol, and the time interval post-DES implantation are independently correlated with ISNA, lipid ISNA, and calcified ISNA.


Assuntos
Reestenose Coronária , Stents Farmacológicos , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Neointima/patologia , Tomografia de Coerência Óptica/métodos , Estudos Retrospectivos , Estudos Transversais , Vasos Coronários/patologia , Stents , Lipoproteínas LDL , Colesterol , Lipídeos , Angiografia Coronária
10.
Eur J Pharmacol ; 968: 176422, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38365108

RESUMO

Vascular smooth muscle cells (VSMCs) contribute to neointimal hyperplasia (NIH) after vascular injury, a common feature of vascular remodelling disorders. Suramin is known to exert antitumour effects by inhibiting the proliferation of various tumour cells; however, its effects and mechanism on VSMCs remain unclear. This study investigated the effects of suramin on human aortic smooth muscle cells (HASMCs), rat aortic smooth muscle cells (RASMCs) and NIH to examine its suitability for the prevention of vascular remodelling disorders. In vitro, suramin administration reduced platelet-derived growth factor type BB (PDGF-BB)-stimulated proliferation, migration, and dedifferentiation of VSMCs through a transforming growth factor beta receptor 1 (TGFBR1)/Smad2/3-dependent pathway. Suramin dramatically inhibited NIH ligation in the left common carotid artery (LCCA) vivo. Therefore, our results indicate that suramin protects against the development of pathological vascular remodelling by attenuating VSMCs proliferation, migration, and phenotypic transformation and may be used as a potential medicine for the treatment of NIH.


Assuntos
Neointima , Suramina , Ratos , Humanos , Animais , Hiperplasia/patologia , Proliferação de Células , Suramina/farmacologia , Suramina/metabolismo , Neointima/patologia , Músculo Liso Vascular , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Remodelação Vascular , Becaplermina/farmacologia , Miócitos de Músculo Liso , Movimento Celular , Células Cultivadas
11.
J Transl Med ; 22(1): 166, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365767

RESUMO

BACKGROUND: Coronary artery bypass graft (CABG) is generally used to treat complex coronary artery disease. Treatment success is affected by neointimal hyperplasia (NIH) of graft and anastomotic sites. Although sirolimus and rosuvastatin individually inhibit NIH progression, the efficacy of combination treatment remains unknown. METHODS: We identified cross-targets associated with CABG, sirolimus, and rosuvastatin by using databases including DisGeNET and GeneCards. GO and KEGG pathway enrichment analyses were conducted using R studio, and target proteins were mapped in PPI networks using Metascape and Cytoscape. For in vivo validation, we established a balloon-injured rabbit model by inducing NIH and applied a localized perivascular drug delivery device containing sirolimus and rosuvastatin. The outcomes were evaluated at 1, 2, and 4 weeks post-surgery. RESULTS: We identified 115 shared targets between sirolimus and CABG among databases, 23 between rosuvastatin and CABG, and 96 among all three. TNF, AKT1, and MMP9 were identified as shared targets. Network pharmacology predicted the stages of NIH progression and the corresponding signaling pathways linked to sirolimus (acute stage, IL6/STAT3 signaling) and rosuvastatin (chronic stage, Akt/MMP9 signaling). In vivo experiments demonstrated that the combination of sirolimus and rosuvastatin significantly suppressed NIH progression. This combination treatment also markedly decreased the expression of inflammation and Akt signaling pathway-related proteins, which was consistent with the predictions from network pharmacology analysis. CONCLUSIONS: Sirolimus and rosuvastatin inhibited pro-inflammatory cytokine production during the acute stage and regulated Akt/mTOR/NF-κB/STAT3 signaling in the chronic stage of NIH progression. These potential synergistic mechanisms may optimize treatment strategies to improve long-term patency after CABG.


Assuntos
Medicamentos de Ervas Chinesas , Sirolimo , Animais , Coelhos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Rosuvastatina Cálcica/farmacologia , Rosuvastatina Cálcica/uso terapêutico , Hiperplasia/tratamento farmacológico , Metaloproteinase 9 da Matriz , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-akt , Neointima , Ponte de Artéria Coronária/efeitos adversos
12.
J Clin Hypertens (Greenwich) ; 26(2): 155-165, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38214206

RESUMO

Total neointima implantation (patch neointima technique + triple-branched stent graft placement) has been performed in proximal aortic repair for acute type A aortic dissection (ATAAD) for more than 10 years at a center. However, there is no report on the mid-term outcomes with a control group of the surgical procedure. Consequently, the authors aimed to evaluate the safety and efficacy of this technique in this study. Patients who underwent the total neointima implantation were classified as Group A, and those who underwent the conventional aortic root reconstruction with the "sandwich" technique and the total aortic arch replacement were classified as Group B. Furthermore, the authors described the preoperative characteristics, operative data, and patient outcomes. Group A patients experienced a shorter surgery duration, lower volumes of perioperative bleeding, and fewer red blood cell transfusions. The incidence of neurological complications was significantly reduced in Group A. All patients maintained a normal range of proximal aortic sizes after surgery. Kaplan-Meier analysis revealed no significant differences between the patients in the two groups regarding cumulative mortality and the incidence of moderate-to-severe aortic insufficiency. In well-selected patients, total neointima implantation is an alternative procedure for the surgical repair of ATAAD.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Implante de Prótese Vascular , Hipertensão , Humanos , Aneurisma da Aorta Torácica/etiologia , Aneurisma da Aorta Torácica/cirurgia , Aorta Torácica/cirurgia , Implante de Prótese Vascular/efeitos adversos , Implante de Prótese Vascular/métodos , Neointima/etiologia , Neointima/cirurgia , Hipertensão/etiologia , Dissecção Aórtica/cirurgia , Stents , Resultado do Tratamento , Estudos Retrospectivos
13.
Hypertension ; 81(4): 787-800, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240164

RESUMO

BACKGROUND: High blood pressure has been suggested to accelerate vascular injury-induced neointimal formation and progression. However, little is known about the intricate relationships between vascular injury and hypertension in the context of arterial remodeling. METHODS: Single-cell RNA-sequencing analysis was used to depict the cell atlas of carotid arteries of Wistar Kyoto rats and spontaneously hypertensive rats with or without balloon injury. RESULTS: We found that hypertension significantly aggravated balloon injury-induced arterial stenosis. A total of 36 202 cells from carotid arteries with or without balloon injury were included in single-cell RNA-sequencing analysis. Cell composition analysis showed that vascular injury and hypertension independently induced distinct aortic cell phenotypic alterations including immune cells, endothelial cells (ECs), and smooth muscle cells. Specifically, our data showed that injury and hypertension-induced specific EC phenotypic alterations, and revealed a transition from functional ECs to hypermetabolic, and eventually dysfunctional ECs in hypertensive rats upon balloon injury. Importantly, our data also showed that vascular injury and hypertension-induced different smooth muscle cell phenotypic alterations, characterized by deferential expression of synthetic signatures. Interestingly, pathway analysis showed that dysregulated metabolic pathways were a common feature in monocytes/macrophages, ECs, and smooth muscle cells in response to injury and hypertension. Functionally, we demonstrate that inhibition of mitochondrial respiration significantly ameliorated injury-induced neointimal formation in spontaneously hypertensive rats. CONCLUSIONS: This study provides the cell landscape changes of the main aortic cell phenotypic alterations in response to injury and hypertension. Our findings suggest that targeting cellular mitochondrial respiration could be a novel therapeutic for patients with hypertension undergoing vascular angioplasty.


Assuntos
Lesões das Artérias Carótidas , Hipertensão , Lesões do Sistema Vascular , Humanos , Ratos , Animais , Ratos Endogâmicos SHR , Células Endoteliais/metabolismo , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/terapia , Neointima/patologia , Ratos Endogâmicos WKY , RNA
14.
J Vasc Interv Radiol ; 35(4): 611-617, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38171414

RESUMO

PURPOSE: To establish an animal model for in-stent restenosis (ISR) after postthrombotic iliac vein stent placement and characterize histopathological changes in tissue within the stented vein. MATERIALS AND METHODS: Iliac vein thrombosis was induced using balloon occlusion and thrombin injection in 8 male Boer goats. Mechanical thrombectomy and iliac vein stent placement were performed 3 days after thrombosis induction. Restenosis was evaluated by venography and optical coherence tomography (OCT) at 1 and 8 weeks after stent placement, and stent specimens were taken for pathological examination after the animals were euthanized. RESULTS: Thrombosis induction was successful in all 8 goats, with >80% iliac vein occlusion. After thrombus removal, OCT revealed considerable venous intimal thickening and a small number of mural thrombi. Neointimal hyperplasia with thrombus formation was observed in all goats 1 week after stent implantation; the degree of ISR was 15%-33%. At 8 weeks, the degree of ISR was 21%-32% in 3 goats, and stent occlusion was observed in 1 goat. At 1 week, the neointima predominantly consisted of fresh thrombi. At 8 weeks, proliferplastic fibrotic tissue and smooth muscle cells (SMCs) were predominant, and the stent surfaces were endothelialized in 2 of 3 goats and partially endothelialized in 1 goat. CONCLUSIONS: In the goat model, postthrombotic neointimal hyperplasia in the venous stent may result from time-dependent thrombus formation and organization, accompanied by migration and proliferation of SMCs, causing ISR. These results provide a basis to further explore the mechanism of venous ISR and promote the development of venous stents that reduce neointimal hyperplasia.


Assuntos
Reestenose Coronária , Trombose Venosa , Animais , Masculino , Veia Ilíaca/diagnóstico por imagem , Veia Ilíaca/cirurgia , Veia Ilíaca/patologia , Reestenose Coronária/patologia , Cabras , Hiperplasia/patologia , Stents , Neointima/patologia , Trombose Venosa/diagnóstico por imagem , Trombose Venosa/terapia
15.
Biomech Model Mechanobiol ; 23(2): 615-629, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38236483

RESUMO

Machine learning (ML) techniques have shown great potential in cardiovascular surgery, including real-time stenosis recognition, detection of stented coronary anomalies, and prediction of in-stent restenosis (ISR). However, estimating neointima evolution poses challenges for ML models due to limitations in manual measurements, variations in image quality, low data availability, and the difficulty of acquiring biological quantities. An effective in silico model is necessary to accurately capture the mechanisms leading to neointimal hyperplasia. Physics-informed neural networks (PINNs), a novel deep learning (DL) method, have emerged as a promising approach that integrates physical laws and measurements into modeling. PINNs have demonstrated success in solving partial differential equations (PDEs) and have been applied in various biological systems. This paper aims to develop a robust multiphysics surrogate model for ISR estimation using the physics-informed DL approach, incorporating biological constraints and drug elution effects. The model seeks to enhance prediction accuracy, provide insights into disease progression factors, and promote ISR diagnosis and treatment planning. A set of coupled advection-reaction-diffusion type PDEs is constructed to track the evolution of the influential factors associated with ISR, such as platelet-derived growth factor (PDGF), the transforming growth factor- ß (TGF- ß ), the extracellular matrix (ECM), the density of smooth muscle cells (SMC), and the drug concentration. The nature of PINNs allows for the integration of patient-specific data (procedure-related, clinical and genetic, etc.) into the model, improving prediction accuracy and assisting in the optimization of stent implantation parameters to mitigate risks. This research addresses the existing gap in predictive models for ISR using DL and holds the potential to enhance patient outcomes through predictive risk assessment.


Assuntos
Reestenose Coronária , Aprendizado Profundo , Dietilestilbestrol/análogos & derivados , Stents Farmacológicos , Intervenção Coronária Percutânea , Humanos , Angiografia Coronária , Constrição Patológica , Stents , Neointima , Resultado do Tratamento
16.
Cell Mol Biol Lett ; 29(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172726

RESUMO

Neointimal hyperplasia is a pathological vascular remodeling caused by abnormal proliferation and migration of subintimal vascular smooth muscle cells (VSMCs) following intimal injury. There is increasing evidence that tRNA-derived small RNA (tsRNA) plays an important role in vascular remodeling. The purpose of this study is to search for tsRNAs signature of neointima formation and to explore their potential functions. The balloon injury model of rat common carotid artery was replicated to induce intimal hyperplasia, and the differentially expressed tsRNAs (DE-tsRNAs) in arteries with intimal hyperplasia were screened by small RNA sequencing and tsRNA library. A total of 24 DE-tsRNAs were found in the vessels with intimal hyperplasia by small RNA sequencing. In vitro, tRF-Glu-CTC inhibited the expression of fibromodulin (FMOD) in VSMCs, which is a negative modulator of TGF-ß1 activity. tRF-Glu-CTC also increased VSMC proliferation and migration. In vivo experiments showed that inhibition of tRF-Glu-CTC expression after balloon injury of rat carotid artery can reduce the neointimal area. In conclusion, tRF-Glu-CTC expression is increased after vascular injury and inhibits FMOD expression in VSMCs, which influences neointima formation. On the other hand, reducing the expression of tRF-Glu-CTC after vascular injury may be a potential approach to prevent vascular stenosis.


Assuntos
Lesões das Artérias Carótidas , Lesões do Sistema Vascular , Animais , Ratos , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Fibromodulina/metabolismo , Hiperplasia/complicações , Hiperplasia/metabolismo , Hiperplasia/patologia , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/patologia , Neointima/prevenção & controle , Ratos Sprague-Dawley , RNA/metabolismo , RNA de Transferência/metabolismo , Remodelação Vascular , Lesões do Sistema Vascular/metabolismo
17.
Atherosclerosis ; 390: 117450, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266625

RESUMO

BACKGROUND AND AIMS: New treatments are needed to prevent neointimal hyperplasia that contributes to post-angioplasty and stent restenosis in patients with coronary artery disease (CAD) and peripheral arterial disease (PAD). We investigated whether modulating mitochondrial function using mitochondrial division inhibitor-1 (Mdivi-1) could reduce post-vascular injury neointimal hyperplasia by metabolic reprogramming of macrophages from a pro-inflammatory to anti-inflammatory phenotype. METHODS AND RESULTS: In vivo Mdivi-1 treatment of Apoe-/- mice fed a high-fat diet and subjected to carotid-wire injury decreased neointimal hyperplasia by 68%, reduced numbers of plaque vascular smooth muscle cells and pro-inflammatory M1-like macrophages, and decreased plaque inflammation, endothelial activation, and apoptosis, when compared to control. Mdivi-1 treatment of human THP-1 macrophages shifted polarization from a pro-inflammatory M1-like to an anti-inflammatory M2-like phenotype, reduced monocyte chemotaxis and migration to CCL2 and macrophage colony stimulating factor (M-CSF) and decreased secretion of pro-inflammatory mediators. Finally, treatment of pro-inflammatory M1-type-macrophages with Mdivi-1 metabolically reprogrammed them to an anti-inflammatory M2-like phenotype by inhibiting oxidative phosphorylation and attenuating the increase in succinate levels and correcting the decreased levels of arginine and citrulline. CONCLUSIONS: We report that treatment with Mdivi-1 inhibits post-vascular injury neointimal hyperplasia by metabolic reprogramming macrophages towards an anti-inflammatory phenotype thereby highlighting the therapeutic potential of Mdivi-1 for preventing neointimal hyperplasia and restenosis following angioplasty and stenting in CAD and PAD patients.


Assuntos
Quinazolinonas , Lesões do Sistema Vascular , Humanos , Camundongos , Animais , Hiperplasia/patologia , Lesões do Sistema Vascular/genética , 60645 , Movimento Celular , Músculo Liso Vascular/patologia , Neointima/metabolismo , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Proliferação de Células
18.
Cell Mol Life Sci ; 81(1): 59, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279051

RESUMO

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is the leading cause of vascular stenosis or restenosis. Therefore, investigating the molecular mechanisms and pivotal regulators of the proliferative VSMC phenotype is imperative for precisely preventing neointimal hyperplasia in vascular disease. METHODS: Wire-induced vascular injury and aortic culture models were used to detect the expression of staphylococcal nuclease domain-containing protein 1 (SND1). SMC-specific Snd1 knockout mice were used to assess the potential roles of SND1 after vascular injury. Primary VSMCs were cultured to evaluate SND1 function on VSMC phenotype switching, as well as to investigate the mechanism by which SND1 regulates the VSMC proliferative phenotype. RESULTS: Phenotype-switched proliferative VSMCs exhibited higher SND1 protein expression compared to the differentiated VSMCs. This result was replicated in primary VSMCs treated with platelet-derived growth factor (PDGF). In the injury model, specific knockout of Snd1 in mouse VSMCs reduced neointimal hyperplasia. We then revealed that ETS transcription factor ELK1 (ELK1) exhibited upregulation and activation in proliferative VSMCs, and acted as a novel transcription factor to induce the gene transcriptional activation of Snd1. Subsequently, the upregulated SND1 is associated with serum response factor (SRF) by competing with myocardin (MYOCD). As a co-activator of SRF, SND1 recruited the lysine acetyltransferase 2B (KAT2B) to the promoter regions leading to the histone acetylation, consequently promoted SRF to recognize the specific CArG motif, and enhanced the proliferation- and migration-related gene transcriptional activation. CONCLUSIONS: The present study identifies ELK1/SND1/SRF as a novel pathway in promoting the proliferative VSMC phenotype and neointimal hyperplasia in vascular injury, predisposing the vessels to pathological remodeling. This provides a potential therapeutic target for vascular stenosis.


Assuntos
Músculo Liso Vascular , Lesões do Sistema Vascular , Camundongos , Animais , Hiperplasia/metabolismo , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Proliferação de Células , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Constrição Patológica/metabolismo , Constrição Patológica/patologia , Fatores de Transcrição/metabolismo , Fenótipo , Neointima/genética , Neointima/metabolismo , Neointima/patologia , Miócitos de Músculo Liso/metabolismo , Células Cultivadas , Movimento Celular
19.
Eur J Pharm Sci ; 192: 106610, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37852309

RESUMO

INTRODUCTION: Arterial restenosis caused by intimal hyperplasia (IH) is a serious complication after vascular interventions. In the rat carotid balloon injury model, we injected phosphate buffer saline (PBS), rapamycin-phosphate buffer saline suspension (RPM-PBS), blank fibrin glue (FG) and rapamycin-fibrin glue (RPM-FG) around the injured carotid artery under ultrasound guidance and observed the inhibitory effect on IH. METHODS: The properties of RPM-FG in vitro were verified by scanning electron microscopy (SEM) and determination of the drug release rate. FG metabolism in vivo was observed by fluorescence imaging. The rat carotid balloon injury models were randomly classified into 4 groups: PBS group (control group), RPM-PBS group, FG group, and RPM-FG group. Periadventitial administration was performed by ultrasound-guided percutaneous puncture on the first day after angioplasty. Carotid artery specimens were analyzed by immunostaining, Evans blue staining and hematoxylin-eosin staining. RESULTS: The RPM particles showed clustered distributions in the FG block. The glue was maintained for a longer time in vivo (> 14 days) than in vitro (approximately 7 days). Two-component liquid FG administered by ultrasound-guided injection completely encapsulated the injured artery before coagulation. The RPM-FG inhibited IH after carotid angioplasty vs. control and other groups. The proliferation of vascular smooth muscle cells (VSMCs) was significantly inhibited during neointima formation, whereas endothelial cell (EC) repair was not affected. CONCLUSION: Periadventitial delivery of RPM-FG contributed to inhibiting IH in the rat carotid artery injury model without compromising re-endothelialization. Additionally, FG provided a promising platform for the future development of a safe, effective, and minimally invasive perivascular drug delivery method to treat vascular disease.


Assuntos
Lesões das Artérias Carótidas , Neointima , Ratos , Animais , Hiperplasia/tratamento farmacológico , Hiperplasia/complicações , Neointima/tratamento farmacológico , Neointima/complicações , Adesivo Tecidual de Fibrina/farmacologia , Adesivo Tecidual de Fibrina/uso terapêutico , Proliferação de Células , Ratos Sprague-Dawley , Lesões das Artérias Carótidas/tratamento farmacológico , Lesões das Artérias Carótidas/metabolismo , Ultrassonografia de Intervenção , Fosfatos
20.
J Vasc Interv Radiol ; 35(2): 285-292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37871832

RESUMO

PURPOSE: To determine whether inhibition of the F11 receptor/JAM-A (F11R) using F11R-specific antagonist peptide 4D results in inhibition of smooth muscle cell (SMC) proliferation and migration in vivo, known as neointimal hyperplasia (NIH), using a mouse focal carotid artery stenosis model (FCASM). MATERIALS AND METHODS: The mouse FCASM was chosen to test the hypothesis because the dominant cell type at the site of stenosis is SMC, similar to that in vascular access stenosis. Fourteen C57BL/6 mice underwent left carotid artery (LCA) partial ligation to induce stenosis, followed by daily injection of peptide 4D in 7 mice and saline in the remaining 7 mice, and these mice were observed for 21 days and then euthanized. Bilateral carotid arteries were excised for histologic analysis of the intima and media areas. RESULTS: The mean intimal area was significantly larger in control mice compared with peptide 4D-treated mice (0.031 mm2 [SD ± 0.024] vs 0.0082 mm2 [SD ± 0.0103]; P = .011). The mean intima-to-intima + media area ratio was significantly larger in control mice compared with peptide 4D-treated mice (0.27 [SD ± 0.13] vs 0.089 [SD ± 0.081]; P = .0079). NIH was not observed in the right carotid arteries in both groups. CONCLUSIONS: Peptide 4D, an F11R antagonist, significantly inhibited NIH in C57BL/6 mice in a FCASM.


Assuntos
Estenose das Carótidas , Molécula A de Adesão Juncional , Animais , Camundongos , Hiperplasia/metabolismo , Hiperplasia/patologia , Molécula A de Adesão Juncional/metabolismo , Túnica Íntima/patologia , Modelos Animais de Doenças , Constrição Patológica/patologia , Camundongos Endogâmicos C57BL , Neointima/metabolismo , Neointima/patologia , Artérias Carótidas , Peptídeos/farmacologia , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...